Abstract Submitted for the MAR07 Meeting of The American Physical Society

Methanol Formation from Carbon Monoxide and Hydrogen on **Neutral Nb₈ Clusters in the Gas Phase** YAN XIE, SHENG-GUI HE, ELLIOT BERNSTEIN, Department of Chemistry, Colorado State University, Fort Collins, CO, 80523-1872 — Reactions of neutral V_n , Nb_n, and Ta_n metal clusters ($n \leq 11$) with $(CO + H_2)/He$ mixed gases and CH_3OH/He in a flow tube reactor (P ~ 14) Torr) are studied by time of flight mass spectroscopy. Metal clusters are generated by 532 nm laser ablation and reactants and products are ionized by low fluence $(\sim 200 \ \mu J/cm^2)$ 193 nm excimer laser light. Nb_n clusters exhibit strong size dependent reactivity in reactions both with $CO + H_2$ and CH_3OH compared with V_n and Ta_n clusters. A remarkably strong mass peak Nb₈COH₄ is observed in the reaction of Nb_n clusters with the mixed gases $CO + H_2$ at various concentration of H₂. This suggests a stable, low energy CH_3OH structure may form on an Nb₈ cluster. Methanol formation is not found on other Nb_n $(n \neq 8)$, V_n, and Ta_n clusters. In reactions of CH₃OH with metal clusters $M_n(M = V, Nb, Ta, n = 3-11)$, molecularly adsorbed products $(M_n CH_3 OH)$ are only observed on Nb₈ and Nb₁₀, whereas dehydrogenated products $(M_n CO)$ are observed for all other clusters. This observation supports the suggestion that CH_3OH can be formed on Nb₈ in the reaction of Nb_n with $CO + H_2$. Reaction mechanisms are discussed based on the experimental results in this work and those in the literature. Theoretical calculations are carried out to confirm our experimental results and suggested reaction mechanisms.

> Yan Xie Department of Chemistry, Colorado State University, Fort Collins, CO, 80523-1872

Date submitted: 22 Nov 2006

Electronic form version 1.4