Abstract Submitted for the MAR07 Meeting of The American Physical Society

Structural and

Magnetic Characterization of Fe-doped La_{2/3}Ca_{1/3}MnO₃ Films¹ OSCAR LUIS ARNACHE OLMOS, Universidad de Antioquia, AXEL HOFFMANN, MSD, Argonne National Laboratory, DORIS A. GIRATA LOZANO, Universidad de Antioquia — We have investigated pure and ⁵⁷Fe-doped La_{2/3}Ca_{1/3}MnO₃ thin films, which were prepared via high O₂-pressure (500 mTorr) by magnetron DC sputtering on (100) LaAlO₃, (100) SrTiO₃ and (100) MgO substrates. The 57 Fe-doped samples contained 1% and 3% ⁵⁷Fe per Mn. The structural and magnetic properties of the films and targets were characterized using X-ray diffraction (XRD) and reflectivity, Mössbauer spectroscopy and magnetometry measurements. XRD shows that films are single phase and epitaxially oriented, and have negligible structural changes upon ⁵⁷Fe-doping. The Mössbauer spectra measured at room temperature exhibit one doublet with an isomer shift of $0.320\pm0.003~\mathrm{mms}^{-1}$, indicating the presence of the Fe³⁺ ion at room temperature in the sample, which is a typical value of the high-spin of Fe³⁺ with octahedral coordination. The quadrupole splitting value was $0.210\pm0.006~\mathrm{mms^{-1}}$. This clearly indicates that Fe is incorporated into the structure by substituting Mn. We will furthermore discuss the influence of ⁵⁷Fe-doping on magnetic and magnetotransport properties.

¹Work supported by COLCIENCIAS and DOE.

Oscar Luis Arnache Olmos Universidad de Antioquia

Date submitted: 17 Nov 2006 Electronic form version 1.4