Abstract Submitted
for the MAR07 Meeting of
The American Physical Society

Structural and Magnetic Characterization of Fe-doped La$_{2/3}$Ca$_{1/3}$MnO$_3$ Films

OSCAR LUIS ARNACHE OLMOS, Universidad de Antioquia, AXEL HOFFMANN, MSD, Argonne National Laboratory, DORIS A. GIRATA LOZANO, Universidad de Antioquia — We have investigated pure and 57Fe-doped La$_{2/3}$Ca$_{1/3}$MnO$_3$ thin films, which were prepared via high O$_2$-pressure (500 mTorr) by magnetron DC sputtering on (100) LaAlO$_3$, (100) SrTiO$_3$ and (100) MgO substrates. The 57Fe-doped samples contained 1% and 3% 57Fe per Mn. The structural and magnetic properties of the films and targets were characterized using X-ray diffraction (XRD) and reflectivity, Mössbauer spectroscopy and magnetometry measurements. XRD shows that films are single phase and epitaxially oriented, and have negligible structural changes upon 57Fe-doping. The Mössbauer spectra measured at room temperature exhibit one doublet with an isomer shift of 0.320±0.003 mm/s, indicating the presence of the Fe$^{3+}$ ion at room temperature in the sample, which is a typical value of the high-spin of Fe$^{3+}$ with octahedral coordination. The quadrupole splitting value was 0.210±0.006 mm/s. This clearly indicates that Fe is incorporated into the structure by substituting Mn. We will furthermore discuss the influence of 57Fe-doping on magnetic and magnetotransport properties.

1Work supported by COLCIENCIAS and DOE.

Oscar Luis Arnache Olmos
Universidad de Antioquia

Date submitted: 17 Nov 2006