Magnetic Properties of Epitaxial Cr/\textit{Cr}_2\textit{O}_3/\textit{Cr} Multilayers\(^1\)

TATHAGATA MUKHERJEE, SARBESWAR SAHOO, CHRISTIAN BINEK, University of Nebraska-Lincoln — We study Cr/\textit{Cr}_2\textit{O}_3/\textit{Cr} trilayer structures grown by Molecular Beam Epitaxy on (111) oriented \textit{Al}_2\textit{O}_3 substrates. X-ray diffraction reveals perfect single crystalline (110) Cr and stoichiometric single crystalline \textit{Cr}_2\textit{O}_3 (111) films. Both, Cr and \textit{Cr}_2\textit{O}_3 order antiferromagnetically with bulk Néel temperatures of 311 and 307K, respectively. Cr is an itinerant antiferromagnet where the antiferromagnetic (AF) order establishes as an incommensurate spin density wave. \textit{Cr}_2\textit{O}_3 in contrast is an AF insulator with localized magnetic moments where magnetoelectric and piezomagnetic effects are both symmetry allowed. Its insulating, magnetoelectric and piezoelectric properties make \textit{Cr}_2\textit{O}_3 an interesting material for extrinsically controlled tunnel barriers in TMR type structures. The lattice mismatch of \(\sim 1.2\%\) at the Cr – \textit{Cr}_2\textit{O}_3 interface creates a strong stress induced piezomagnetic moment revealed by SQUID measurements. The interaction between the piezomoment and the spin distribution at the Cr- interface gives rise to a rich scenario of magnetic proximity effects which we study by SQUID magnetometry, magneto-optical Kerr effect and electrical transport measurements.

\(^1\)Financial support by NCESR and NRI is gratefully acknowledged.