Electronic Structure and Carrier Mobility in Strain-Engineered Nanostructures1 Decai Yu, Yu Zhang, Ji Zang, Feng Liu, University of Utah — Strain engineering is a major driving force to continue the performance scaling of silicon devices. However, currently strain engineering is confined in planar hetero-structures. It is anticipated that future generation of devices may employ nanostructures and new quantum principles. Here, we present theoretical studies of strain engineered nanostructures for potential device applications. Combining first-principles and finite element calculations, we analyze the electronic band structure and carrier mobility in SiGe nanotubes and Si nanomembranes that are strain-modulated by Ge quantum dots.

1The authors acknowledge the financial support from DOE.