Exchange-driven re-entrant layer-occupancy transitions in biased bilayer systems

J.R. Rodriguez, C.B. Hanna, Boise State University —

Hamilton et al. showed experimentally that an externally biased double-quantum-well system in zero magnetic field could exhibit an exchange-driven bilayer-to-monolayer (“2-1”) transition as the total carrier density was increased. This transition is due to the combined effects of the negative compressibility of the low-density carriers and the layer imbalance produced by external gate biases. We give an approximate criterion for observing a re-entrant “2-1-2” transition that repopulates the emptied layer as the total carrier density is further increased. The gate voltages required for repopulation are shown to be impractically high for p-type GaAs bilayer devices with hole carriers. We show, however, that it may be possible to observe a “2-1-2” transition in low-density n-type electron bilayer systems with very small layer separations.

1Supported by NSF DMR-0206681 and by the Research Corporation

C.B. Hanna
Boise State University

Date submitted: 17 Nov 2006