Thermoelectric properties of \(p \)-type \(\text{Bi}_2\text{Te}_3/\text{Sb}_2\text{Te}_3 \) and \(n \)-type \(\text{Bi}_2\text{Te}_3/\text{Bi}_2\text{Te}_{3-x}\text{Se}_x \) superlattices\(^1\) MIN SIK PARK, JUN LI, A. J. FREEMAN, Northwestern U. — Thermoelectric superlattices are good candidates for obtaining high figure of merit (ZT) values. Indeed, the highest ZT of 2.4 at room temperature in \(p \)-type \(\text{Bi}_2\text{Te}_3/\text{Sb}_2\text{Te}_3 \) superlattices and the high ZT of 1.4 in \(n \)-type \(\text{Bi}_2\text{Te}_3/\text{Bi}_2\text{Te}_{2.83}\text{Se}_{0.17} \) superlattices are found.\(^2\) While it is well known that phonon-blocking and electron-transmission is a possible mechanism for the highest ZT in superlattices, the electron-transmission near the interface has not been studied much at the microscopic level. By first-principles calculations with the highly precise full-potential linearized augmented plane wave (FLAPW) method,\(^3\) the electronic structures and thermoelectric properties of bulk \(\text{Bi}_2\text{Te}_3 \), \(\text{Sb}_2\text{Te}_3 \) and \(\text{Bi}_2\text{Te}_{3-x}\text{Se}_x \) and of their superlattices \(\text{Bi}_2\text{Te}_3/\text{Sb}_2\text{Te}_3 \) and \(\text{Bi}_2\text{Te}_3/\text{Bi}_2\text{Te}_{3-x}\text{Se}_x \) are investigated and will be reported.

\(^1\)Supported by DARPA (Grant No. W911NF-06-1-0175).