Abstract Submitted for the MAR07 Meeting of The American Physical Society CO₂ Sensing and CO and H₂O Interactions on Mats of Gold Nanoparticle Decorated GaN Nanowires. 1 C.A. BERVEN, R. ABDELRA-HAMAN, W. BARREDO, D.N. MCILROY, Dept. of Physics, University of Idaho — We report on the use of mats of gold-nanoparticle-decorated GaN nanowires for the detection of CO₂ and the possible generation of CO₂ and H₂ by interactions of CO and H₂O on the surfaces of the gold nanoparticles. The sensor was constructed from a 10-20 μ m thick mat of GaN nanowires grown on a 1 cm diameter sapphire substrate followed decoration of the nanowires with gold nanoparticles. Selective wet etching was then used to reduce the amount of gold on the nanowires. Electrical measurements were made of the mat under various atmospheres. When exposed to just water vapor, CO or H₂ the current-voltage curves were similar to those when in vacuum. However, when the device was exposed to CO followed by H₂O, we saw a significant reduction in the current at all values of applied voltage. Exposure to just CO₂ showed a similar response to that of mixing CO and H₂O implying that CO₂ is being generated and that what is being sensed is the product of the reaction of CO + H₂O creating CO₂. As a consequence of CO₂ being detected after the mixing of CO and H₂O, we speculate that H₂ is being generated giving a possible new mechanism for H_2 generation. ¹Reserach supported by NSF (EPS-0447689 and PHY-0453253) and the W M Keck Foundation Chris Berven Dept. of Physics, University of Idaho Date submitted: 18 Nov 2006 Electronic form version 1.4