Abstract Submitted for the MAR07 Meeting of The American Physical Society

Binding energies of CO_2 with some ionic liquids¹ WILLIAM EU-CKER, JOHN BENDLER, United States Naval Academy — Room temperature ionic liquids (RTILs), a novel class of materials with negligible vapor pressures and potentiality as benign solvents, may be an ideal chemical for carbon dioxide (CO_2) gas sequestration. Ab initio computational modeling was used to investigate the molecular interactions of simple RTIL anions hexafluorophosphate (PF_6^-) and tetrafluoroborate (BF_4^-) with CO₂. Electronic potential energy surface (PES) scans of a comprehensive sampling of 1:1 anion-CO₂ orientations were computed using Spartan '02 with Dunning's correlation consistent basis sets. Qualitatively, the PES scans yielded deeper, more numerous and radially closer active sites surrounding BF_4^- anion as compared with the PF_6^- anion. Quantitatively, the binding energies of 17.87 kJ/mol and 25.24 kJ/mol were extracted from the identified global energy minima for the PF_6^- and BF_4^- systems, respectively. The smaller BF_4^- anion was concluded to bind more strongly to the CO_2 . However, literature-reported experimental Henry's law constants for CO_2 dissolved in imidizolium based RTILs show greater gas solvation in the PF_6^- system. The discrepancy between the energetics calculation results and the experimental solvation data will be discussed.

¹The Office of Naval Research-Global (London) and the Chalmers University of Technology, Goteborg, Sweden, supported this research.

William Eucker United States Naval Academy

Date submitted: 18 Nov 2006

Electronic form version 1.4