MAR07-2006-002570

Abstract for an Invited Paper for the MAR07 Meeting of the American Physical Society

Phase Diagram of the Disordered RKKY Model in Dilute Magnetic Semiconductors

DONALD PRIOUR, JR., University of Maryland, College Park; University of Missouri, Kansas City

We consider ferromagnetism in spatially randomly located magnetic moments, as in a diluted magnetic semiconductor, coupled via the carrier-mediated indirect exchange RKKY interaction. We obtain, via Monte Carlo calculations, the magnetic phase diagram as a function of the impurity moment density n_i and the relative carrier concentration n_c/n_i . As evidenced by the diverging ferromagnetic correlation length and magnetic susceptibility, the boundary between ferromagnetic and nonferromagnetic phases constitutes a line of zero temperature critical points which can be viewed as a magnetic percolation transition. In the dilute limit, we find that bulk ferromagnetism vanishes for $n_c/n_i > 0.1$. We also incorporate the local antiferromagnetic direct superexchange interaction between nearest neighbor impurities and examine the impact of a damping factor in the RKKY range function. This work has been done in collaboration with Sankar Das Sarma at the University of Maryland and supported by the US-ONR and NSF.

[1] D.J. Priour, Jr. and S. Das Sarma, Phys. Rev. Lett., 97, 127201 (2006).

[2] D.J. Priour, Jr. and S. Das Sarma, Phys. Rev. B, 73, 165203 (2006).

[3] D.J. Priour, Jr., E.H. Hwang, and S. Das Sarma, Phys. Rev. Lett. 95, 037201 (2005).

[4] S. Das Sarma, E.H. Hwang, and D.J. Priour, Jr., Phys. Rev. B 70, 161203 (2004).

[5] D.J. Priour, Jr., E.H. Hwang, and S. Das Sarma, Phys. Rev. Lett. 92, 117201 (2004).