Coulomb gas scaling of the non-equilibrium spin-boson model1
ADITI MITRA, New York University, ANDREW MILLIS, Columbia University
— The nonequilibrium “spin-boson model,” a localized electronic level coupled to
a fluctuating two-state system and to two electronic reservoirs, is solved via an
Anderson-Yuval-Hamann mapping onto a plasma of alternating positive and neg-
ative charges time-ordered along the two “Keldysh” contours needed to describe
onequilibrium physics. The interaction between charges depend on whether their
time separation is small or large compared to a dephasing scale defined in terms of
the chemical potential difference between the electronic reservoirs, and a decoher-
ence scale defined in terms of the current flowing from one reservoir to another. A
onequilibrium scaling transformation is introduced. An important feature is the
presence in the model of a new coupling, essentially the decoherence rate, which
acquires an additive renormalization similar to that of the energy in equilibrium
problems. The resulting flow equations are used to study the competition between
the dephasing-induced formation of independent resonances tied to the two chemical
potentials, and the decoherence which cuts off the scaling and leads to effectively
classical long-time behavior.

1Acknowledgements: This work was supported by NSF-DMF 0431350

Aditi Mitra
New York University

Date submitted: 25 Nov 2006
Electronic form version 1.4