Non-polar GaN structures on γ-LiAlO$_2$ grown by plasma-assisted molecular beam epitaxy

Li-Wei Tu, H.M. Huang, M.Z. Hsu, L.K. Wang, Y.L. Cheng, Dept. of Physics and Center for Nanoscience and Nanotechnology, National Sun Yat-Sen Univ., M.C. Chou, Dept. of Materials Science & Optoelectronic Engineering, National Sun Yat-Sen Univ., C.L. Hsiao, Center for Condensed Matter Sciences, National Taiwan Univ., Q.Y. Chen, Dept. of Phys. and Center for Nanoscience and Nanotechnology, Natl. Sun Yat-Sen U./Dept. of Phys. and Texas Center for Superconductivity, U. of Houston, H.W. Seo, Dept. of Physics, Univ. of Arkansas, W.K. Chu, Dept. of Physics and Texas Center for Superconductivity, Univ. of Houston — A-plane lithium aluminate (LAO) in γ-phase crystal structure, γ-LiAlO$_2$ (100), was used as the substrate which was grown by Czochralski pulling method. With a lattice mismatch of $[0001]_{\text{GaN}}\parallel[0\overline{1}0]_{\text{LAO}} \sim 0.3\%$ and $[\overline{1}1\overline{2}0]_{\text{GaN}}\parallel[001]_{\text{LAO}} \sim 1.7\%$, γ-LiAlO$_2$ (100) has a much smaller lattice mismatch with the GaN (1100) than the conventional substrates. M-plane GaN epilayer was successfully grown by plasma-assisted molecular beam epitaxy. X-ray diffraction theta/two-theta scan shows a diffraction peak due to m-plane GaN. Raman scattering confirms Raman modes from the GaN (1100) structure. Cathodoluminescence yields a peak at 363 nm at room temperature. Nanostructures were explored also. Comparisons to structures grown on the c-plane will be presented.

Li-Wei Tu
Dept. of Physics and Center for Nanoscience and Nanotechnology
National Sun Yat-Sen Univ.