Abstract Submitted for the MAR07 Meeting of The American Physical Society

Structural and electrical properties of $Bi_{2-x}M_xIr_2O_7$ ($M=Na^+$, and Ce^{4+}) pyrochlores CARLOS COSIO-CASTAÑEDA, OLIVER MARTÍNEZ-ANAYA, GUSTAVO TAVIZÓN, Fac. de Quimica, PABLO DE LA MORA, Fac. de Ciencias, UNAM, Mexico, D.F. — In α -pyrochlores, $A_2B_2O_7$, it is possible to appreciate different magnetic couplings depending on A and B spinarrangement. In order to investigate how these magnetic and electrical properties are related with the iridium oxidation-state, we investigate the $Bi_{2-x}M_xIr_2O_7$ system $(M = Na^+, Ca^{2+})$ and Ce^{4+} . Polycrystalline samples have been synthesized by the conventional solid-state reaction method. Single-phase polycrystalline samples were confirmed by X-ray diffraction patterns. Structural characterizations were performed by X- ray Rietveld refinement of powders and the temperature dependence of the electrical resistivity was studied in the 10-300 K range. The samples showed a metallic-type behavior that depended on the Iridium oxidation-state. This behavior could be explained on the basis of the hole/electron doping when we introduce some different Bi^{3+} -substituent metals in order to change the iridium electronic state. In this way, Ce^{4+} - doping will produce a change from Ir^{4+} ($t_{2g}^5e_g^0$, electronic state in octahedral coordination) to Ir^{3+} ($t_{2g}^6e_g^0$)

> Pablo de la Mora Fac. de Ciencias, UNAM, Mexico, D.F.

Date submitted: 19 Nov 2006 Electronic form version 1.4