Abstract Submitted
for the MAR07 Meeting of
The American Physical Society

**Structural and electrical properties of** $Bi_{2-x}M_xIr_2O_7$ ($M = Na^+$, $Ca^{2+}$ and $Ce^{4+}$) pyrochlores

CARLOS COSIO-CASTAÑEDA, OLIVER MARTÍNEZ-ANAYA, GUSTAVO TAVIZÓN, Fac. de Química, PABLO DE LA MORA, Fac. de Ciencias, UNAM, Mexico, D.F. — In α-pyrochlores, $A_2B_2O_7$, it is possible to appreciate different magnetic couplings depending on A and B spin-arrangement. In order to investigate how these magnetic and electrical properties are related with the iridium oxidation-state, we investigate the $Bi_{2-x}M_xIr_2O_7$ system ($M = Na^+$, $Ca^{2+}$ and $Ce^{4+}$). Polycrystalline samples have been synthesized by the conventional solid-state reaction method. Single-phase polycrystalline samples were confirmed by X-ray diffraction patterns. Structural characterizations were performed by X-ray Rietveld refinement of powders and the temperature dependence of the electrical resistivity was studied in the 10-300 K range. The samples showed a metallic-type behavior that depended on the Iridium oxidation-state. This behavior could be explained on the basis of the hole/electron doping when we introduce some different $Bi^{3+}$-substituent metals in order to change the iridium electronic state. In this way, $Ce^{4+}$-doping will produce a change from $Ir^{4+}$ ($t^5_{2g}e_{g}^0$, electronic state in octahedral coordination) to $Ir^{3+}$ ($t^6_{2g}e_{g}^0$).