Phase diagram for ultracold bosons in double-well optical lattices

IPPEI DANSHITA, JAMES E. WILLIAMS, NIST, Gaithersburg, MD 20899, CARLOS SA DE MELO, School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, CHARLES W. CLARK, NIST, Gaithersburg, MD 20899 — We study the superfluid-Mott insulator transition of bosons in double-well optical lattices. Applying a mean-field approximation to the Bose-Hubbard Hamiltonian, we obtain the zero-temperature phase diagram and find that there exist the half-integer-filling and integer-filling Mott insulator domains in the phase diagram. We show that the half-integer-filling Mott insulator phase is stabilized as the intra-well hopping energy increases. We also calculate the phase diagram by employing the time evolving block decimation (TEBD) algorithm and compare the results obtained from the mean-field approximation with those from the TEBD.

I.D. is supported by a Grant-in-Aid from JSPS.