How localized is “local?” Efficiency vs. accuracy of $O(N)$ domain decomposition in local orbital based all-electron electronic structure theory

VILE HAVU, VOLKER BLUM, MATTHIAS SCHEFFLER, Fritz-Haber Institut der MPG — Numeric atom-centered local orbitals (NAO) are efficient basis sets for all-electron electronic structure theory. The locality of NAO’s can be exploited to render (in principle) all operations of the self-consistency cycle $O(N)$. This is straightforward for 3D integrals using domain decomposition into spatially close subsets of integration points, enabling critical computational savings that are effective from \sim tens of atoms (no significant overhead for smaller systems) and make large systems (100s of atoms) computationally feasible. Using a new all-electron NAO-based code, we investigate the quantitative impact of exploiting this locality on two distinct classes of systems: Large light-element molecules [Alanine-based polypeptide chains $(\text{Ala})_n$], and compact transition metal clusters. Strict NAO locality is achieved by imposing a cutoff potential with an onset radius r_c, and exploited by appropriately shaped integration domains (subsets of integration points). Conventional tight $r_c \leq 3\,\text{Å}$ have no measurable accuracy impact in $(\text{Ala})_n$, but introduce inaccuracies of 20-30 meV/atom in Cu_n. The domain shape impacts the computational effort by only 10-20 % for reasonable r_c.

Vile Havu
Fritz-Haber Institut der MPG

Date submitted: 25 Nov 2006