Optic phonon anomaly as a precursor to polaron formation in a layered CMR manganite. Dmitry Reznik, Frank Weber, Forschungszentrum Karlsruhe, Nadir Aliouane, Dimitri Argyriou, Hahn-Meitner Institut, Marcus Braden, Physikalisches Institut, Universität zu Köln, Winfried Reichardt, Forschungszentrum Karlsruhe — We found evidence of a precursor effect to polaron formation in the bond stretching phonons in the bilayer CMR manganite $La_{2-2x}Sr_{1+2x}Mn_2O_7$ at 10K. Inelastic neutron scattering measurements of these phonons in the XX0 direction show that both the transverse and longitudinal branches broaden abruptly from $X=0.15$, where they are resolution limited, to $X=0.25$ where FWHM=13meV. They then narrow again on approach to the zone boundary ($X=0.5$). The shell model predicts a downward dispersion following the cosine function for the transverse branch and upward dispersion for the longitudinal branch, which is exactly what is observed in undoped cuprates. But in $La_{2-2x}Sr_{1+2x}Mn_2O_7$ both branches show a steep downward dispersion above $x=0.15$. The anomalous dispersion and broadening can be understood as a precursor effect to the CMR transition at 125K because they appear at the same wavevectors as the polaron peaks in the same compound observed above 125K near $q=(0.27,0.27,0)$. This behavior is very unusual, because such precursor effects have previously been associated with phase transitions where charge order appears on cooling, not on heating as in CMR manganites.

Dmitry Reznik
Forschungszentrum Karlsruhe

Date submitted: 04 Dec 2006

Electronic form version 1.4