High Resolution Polar Kerr Effect Measurements of High-Temperature Superconductors: Evidence for Broken Time Reversal Symmetry Below the Pseudogap temperature1 ELIZABETH SCHEMM, JING XIA, WOLTER SIEMONS, GERTJAN KOSTER, MARTIN M. FEJER, AHARON KAPITULNIK, Stanford University — High resolution Polar Kerr Effect (PKE) measurements were performed on YBa\textsubscript{2}Cu\textsubscript{3}O\textsubscript{7−δ} as a function of temperature for variety of doping levels. In order be able to measure effects beyond our old search for anyon superconductivity, we devised a new technique based on a fiber Sagnac interferometer with a zero-area Sagnac loop. With this technique we show a shotnoise-limited sensitivity of 100 nanorad/\sqrt{Hz} with incident photon power of $\sim 10 \mu$-Watt, in a wide temperature range from 0.3 K to room temperature. Our results indicate that a Time Reversal Symmetry Breaking (TRSB) signal appears in all underdoped YBa\textsubscript{2}Cu\textsubscript{3}O\textsubscript{7−δ} samples below the doping dependent pseudogap temperature. The effect increases with decreasing temperature and seems to saturate at a lower temperature close to T_c. The saturated size of the effect increases with increasing δ. We will discuss possible origins of this effect and its presence in other high-Tc superconductors.

1This work was supported by Center for Probing the Nanoscale, NSF NSEC Grant 0425897 and by the Department of Energy grant DEFG03-01ER45925.