Abstract Submitted for the MAR07 Meeting of The American Physical Society

Opening the Pandora's box to understand flow behavior of polymeric fluids. SHAM RAVINDRANATH, University of Akron, POUYAN BOUKANY, U, YANGYANG WANG, SHI-QING WANG, University of Akron — Structure-property relationship has been explored for decades in the context of flow behavior of entangled polymeric liquids. For a long time, it has been assumed that the structure of an entangled polymer, i.e., the entanglement network would experience smooth changes during flow. Using an effective particle-tracking velocimetric (PTV) method recently developed in our lab [1], we found that the nonlinear flow dynamics are associated with an elastic breakdown of the fluid structure. This cohesive failure does not necessarily occur homogeneously in a macroscopic-scale experiment, making it ambiguous to interpret traditional rheological measurements. The presentation complies a whole set of PTV observations to elucidate the physical origin of nonlinear flow phenomena in complex fluids such as polymers. [1] *Phys. Rev. Lett.* **96**, 016001 (2006); *ibid.* **96**, 196001; *ibid.* **97**, 187801.

> Shi-Qing Wang University of Akron

Date submitted: 19 Nov 2006

Electronic form version 1.4