Magnetotransport and magneto-optical properties of GaMnAs thin films with high Mn concentrations KENICHI OHNO, Dept. of Electronic Eng., The Univ. of Tokyo, SHINOBU OHYA, Dept. of Electronic Eng., The Univ. of Tokyo; PRESTO JST, MASAAKI TANAKA, Dept. of Electronic Eng., The Univ. of Tokyo; SORST JST — III-V-based ferromagnetic-semiconductor (FMS) GaMnAs is a good model system for future semiconductor-spintronics devices. For practical applications, it is important to increase the Curie temperature ($T_C$) of GaMnAs (the current record is 173 K) to room temperature. The mean field theory predicts that $T_C$ of GaMnAs increases in proportion to its Mn concentration $x$. However, it is difficult to grow GaMnAs with $x > 10\%$, because MnAs clusters and Mn interstitial defects are easily formed in such a high $x$ region. Here, we have successfully grown GaMnAs films with $x$ of 12 - 21\% by decreasing the growth temperature to 150-200$^\circ$C and by reducing the film thickness to 10 nm. The magnetic circular dichroism and the anomalous Hall effect measurements indicated that these GaMnAs films have the intrinsic FMS features. A high $T_C$ value of 170 K was obtained when $x = 12\%$. This work was partly supported by PRESTO/SORST of JST, Grant-in-aid for Scientific Research, IT Program of RR2002 of MEXT.

Kenichi Ohno
Dept. of Electronic Eng., The Univ. of Tokyo

Date submitted: 19 Nov 2006

Electronic form version 1.4