Abstract Submitted for the MAR07 Meeting of The American Physical Society

Pre-Exponential factor and hopping criterion in the Efros-Shklovskii regime¹ MIGUEL RODRIGUEZ, BONALDE ISMARDO, ERNESTO MEDINA, Centro de Física, IVIC — We address the variable-range hopping regime in the range for which the measured temperature T is of the order of the characteristic Efros-Shklovskii temperature T_{ES} . In such a range current theories imply $r_{hop}/\xi < 1$, where r_{hop} is the hopping length and ξ is the localization length, clearly in contradiction with the standard criterion for hopping conduction. We consider impurity overlap wavefunctions of the form $\psi(r) \propto r^{-n} \exp(-r/\xi)$ and include the preexponential factor of the resistivity as a logarithmic correction in the Mott optimization procedure. From the general expression derived, the standard Efros-Shklovskii law is recovered for $T << T_{ES}$; whereas an extended preexponential-dominated regime, consistent with $r_{hop}/\xi > 1$, is found for $T_{ES} \ge T$. We argue that the new expression resulting from an interplay between preexponential and exponential factors is a consistent extension of the classical Efros-Shklovskii argument.

¹Supported by FONACIT through grant G-97000670

Ernesto Medina IVIC

Date submitted: 04 Dec 2006

Electronic form version 1.4