Multiple-Scattering of Millimeter Waves in Random Dielectrics

DUSTIN MCINTOSH, JOHN A. SCALES, L. D. CARR, Dept. of Physics, Colorado School of Mines, Golden, CO 80401 USA, VALENTIN FREILIKHER, Dept. of Physics, Bar-Ilan University, Ramat-Gan 52900, Israel, YU. P. BLIOKH, Physics Dept., Technion-Israel Institute of Technology, Haifa 32000 Israel — We investigate millimeter wave localization in random binary-layered dielectrics composed of sub-wavelength scatterers. We measure the broad-band phase-dependent reflection and transmission response of the system. The random dielectrics exhibit band gaps and transmission resonances, the hallmark of localization. The band gaps correspond to forbidden mode propagation; the resonances to effective cavities in the system. These cavities are associated with enhanced attenuation and slow light which we observe in both experiment and theory. These effects are a result of weak multiple-scattering by the layer boundaries due to the disorder in the dielectric stack.

1We acknowledge the National Science Foundation for support.