Abstract Submitted for the MAR07 Meeting of The American Physical Society

Effects of magnetic fluctuation on $0-\pi$ transition in a superconductor-ferromagnet-superconductor junction MICHIYASU MORI, SHIN'ICHI HIKINO, SABURO TAKAHASHI, SADAMICHI MAEKAWA, Tohoku University — There has been growing interest in a superconductor- ferromagnetic metal-superconductor (SFS) junction, in which the Josephson critical current, $I_{\rm c}$, shows a cusp as a function of thickness of ferromagnetic-layer, d, and/or temperature, T. Such a non-monotonous behavior, which is in marked contrast to $I_{\rm c}$ in a conventional Josephson junction, originates from the fact that the current-phase relation is shifted by π . This is called π -state. We study the influence of magnetic fluctuation on $I_{\rm c}$ in the SFS junction by a tunneling Hamiltonian approach. An analytical formula of $I_{\rm c}$ is given in the fourth order perturbation theory as regards the tunneling matrix element. Electrons propagate diffusively in the FM due to non-magnetic- and magnetic scatterings. The I_c exhibits the damped oscillatory dependence on d, and shows the transition between θ - and π -states. When the superconducting transition temperature is comparable to the ferromagnetic Curie temperature, the period of oscillation is elongated by increasing T due to the magnetic fluctuation, which plays an important role in the 0- π transition, in particular, with T. Our results present an appropriate combination of a superconductor and a ferromagnetic metal to control the θ - and the π -states.

> Michiyasu Mori Tohoku University

Date submitted: 19 Nov 2006

Electronic form version 1.4