Fabrication, characterization, and magnetic and electronic properties of epitaxial La$_{0.5}$Sr$_{0.5}$CoO$_3$ films

M.A. TORIJA, M. SHARMA, J. WU, C. LEIGHTON, University of Minnesota — Bulk La$_{1-x}$Sr$_x$CoO$_3$ (LSCO) has received considerable attention with regard to magnetic phase separation. Fabrication of epitaxial films would provide a means to study this phase separation under dimensional confinement. We have investigated the properties of epitaxial films of $x = 0.5$ LSCO on SrTiO$_3$ (001) by reactive d.c. sputtering from compound targets. Structure and properties were studied as a function of sputtering pressure, O$_2$/Ar ratio, and post-deposition O$_2$ treatment. Optimized conditions result in single phase, stoichiometric, substantially relaxed, epitaxial films. At a fixed O$_2$ / Ar ratio, two distinct regimes of total sputtering pressure (P) occur. Films grown at $P > 50$ mTorr have properties close to bulk; they are ferromagnetic ($T_C \approx 230$ K, $M_S \approx 2 \mu_B$/Co), have a metallic-like $\rho(T)$ at all T, and exhibit 10 % magnetoresistance at T_C. For $P < 50$ mTorr, we obtain lower surface roughness and narrower rocking curves but with low moment, insulating $\rho(T)$, and increased out-of-plane lattice parameter due to O deficiency. Similarly, a dramatic enhancement in physical properties, and elimination of a CoO minority phase, is obtained when cooling in 500 Torr of O$_2$. The results demonstrate good control over the oxygen stoichiometry, and therefore physical properties. Work supported by NSF DMR.

M.A. Torija
University of Minnesota

Date submitted: 26 Nov 2006

Electronic form version 1.4