Abstract Submitted for the MAR07 Meeting of The American Physical Society

Influence of size effect and electron correlation to the energy band gap of $CuFeO_2$ and $AgFeO_2$ KHUONG ONG, KEWU BAI, Institute of High Performance Computing, Singapore, PETER BLAHA, Inst.f. Materials Chemistry, TU Vienna, PING WU, Institute of High Performance Computing, Singapore — We have calculated the electronic structure of delafossite type oxides CuFeO₂ and AgFeO₂ using the Full Potential Linearlized Augmented Plane Wave (FP-LAPW) method within Perdew-Burke-Ernzerhof Generalized-Gradient Approximation (PBE-GGA). A metallic state instead of true insulating state is obtained for $CuFeO_2$ and $AgFeO_2$. The insulating state is reproduced when electron correlations have been taken into account. An effective Hubbard parameter for Fe, $U_{eff}=7.86$ eV, has been derived based on an ab initio constraint calculation. This value is an over estimation for the optical band gaps of $CuFeO_2$ and most probably for $AgFeO_2$ as well. One reasonable U_{eff} has been derived by comparing between computational and experimental X-Ray emission spectra. The energy band gap of $CuFeO_2$ and $AgFeO_2$ within the PBE-GGA+U is found as charge transfer gap. Theoretical optical band gaps $\Delta_0 = 1.30 \,\mathrm{eV}$, $\Delta_1 = 2.06 \,\mathrm{eV}$, and $\Delta_2 = 3.20 \,\mathrm{eV}$ for $CuFeO_2$ are quite compatible with experimental data. For AgFeO₂ an optical band gap $\Delta_0 = 1.90 \text{eV}$ has been predicted. The size effect is considered as the origin of the increase in optical and energy band gaps of AgFeO₂ in comparison with CuFeO₂.

> Khuong Ong Institute of High Performance Computing, Singapore

Date submitted: 26 Nov 2006

Electronic form version 1.4