Resonant soft x-ray scattering study of the multiferroicity in TbMn$_2$O$_5$

J. OKAMOTO, D. J. HUANG, K. S. CHAO, H.-J. LIN, C. T. CHEN, National Synchrotron Radiation Research Center, Taiwan, C. Y. MOU, National Tsing Hua University, Taiwan, S. PARK, S-W. CHEONG, Rutgers University, USA

— TbMn$_2$O$_5$ is one of the fascinating multiferroic compounds whose spontaneous polarization can be controlled by applying magnetic field. Neutron diffraction measurements reported that incommensurate-commensurate transition of antiferromagnetic ordering is related to the appearance of ferroelectricity. In order to investigate the relationship between magnetic ordering and ferroelectricity associated with electronic structures of the Mn 3d states, we measured soft x-ray resonant magnetic scattering of the single crystalline TbMn$_2$O$_5$ with photon energies around Mn $L_{2,3}$ edge. We observed that antiferromagnetic ordering of TbMn$_2$O$_5$ with incommensurate propagation vectors ($\frac{1}{2}+\delta_x$, 0, $\frac{1}{4}+\delta_z$) coexists with antiferromagnetic ordering with a commensurate propagation vector ($\frac{1}{2}$, 0, $\frac{1}{4}$) in the ferroelectric phase (22 K $< T$ < 37 K). Comparing the temperature dependence of resonant x-ray scattering and the arguments based on symmetry considerations, we discuss the magnetic ordering which leads to the magneto-electric effect in TbMn$_2$O$_5$.

Jun Okamoto
National Synchrotron Radiation Research Center, Taiwan

Date submitted: 26 Nov 2006

Electronic form version 1.4