Finite size effect on hydrogen bond cooperativity in (Ala)$_n$ polypeptides: A DFT study using numeric atom-centered orbitals

VOLKER BLUM, Fritz-Haber-Institut, JOEL IRETA, MATTHIAS SCHEFFLER

— An accurate representation of the energetic contribution E_{hb} of hydrogen bonds to structure formation is paramount to understand the secondary structure stability of proteins, both qualitatively and quantitatively. However, E_{hb} depends strongly on its environment, and even on the surrounding peptide conformation itself. For instance, a short α-helical polypeptide (Ala)$_4$ can not be stabilized by its single hydrogen bond, whereas an infinite α-helical chain (Ala)$_\infty$ is clearly energetically stable over a fully extended conformation. We here use all-electron density functional calculations in the PBE generalized gradient approximation by a recently developed, computationally efficient numeric atom-centered orbital based code1 to investigate this H-bond cooperativity that is intrinsic to Alanine-based polypeptides (Ala)$_n$ ($n=1$-20,∞). We compare finite and infinite prototypical helical conformations (α, π, 3_{10}) on equal footing, with both neutral and ionic termination for finite (Ala)$_n$ peptides. Moderately sized NAO basis sets allow to capture E_{hb} with meV accuracy, revealing a clear jump in E_{hb} (cooperativity) when two H-bonds first appear in line, followed by slower and more continuous increase of E_{hb} towards $n \to \infty$.