Abstract Submitted for the MAR07 Meeting of The American Physical Society

Finite size effect on hydrogen bond cooperativity in $(Ala)_n$ polypeptides: A DFT study using numeric atom-centered orbitals VOLKER BLUM, Fritz-Haber-Institut, JOEL IRETA, MATTHIAS SCHEFFLER — An accurate representation of the energetic contribution $E_{\rm hb}$ of hydrogen bonds to structure formation is paramount to understand the secondary structure stability of proteins, both qualitatively and quantitatively. However, $E_{\rm hb}$ depends strongly on its environment, and even on the surrounding peptide conformation itself. For instance, a short α -helical polypeptide (Ala)₄ can not be stabilized by its single hydrogen bond, whereas an infinite α -helical chain (Ala)_{∞} is clearly energetically stable over a fully extended conformation. We here use all-electron density functional calculations in the PBE generalized gradient approximation by a recently developed, computationally efficient numeric atom-centered orbital based code¹ to investigate this H-bond *cooperativity* that is *intrinsic* to Alanine-based polypeptides $(Ala)_n$ $(n=1-20,\infty)$. We compare finite and infinite prototypical helical conformations $(\alpha, \pi, 3_{10})$ on equal footing, with both neutral and ionic termination for finite $(Ala)_n$ peptides. Moderately sized NAO basis sets allow to capture $E_{\rm hb}$ with meV accuracy, revealing a clear jump in $E_{\rm hb}$ (cooperativity) when two H-bonds first appear in line, followed by slower and more continuous increase of $E_{\rm hb}$ towards $n \to \infty$. ¹ V. Blum, R. Gehrke, P. Havu, V. Havu, M. Scheffler, *The FHI Ab Initio Molecular* Simulations (aims) Project, Fritz-Haber-Institut, Berlin (2006).

> Volker Blum Fritz-Haber-Institut

Date submitted: 20 Nov 2006

Electronic form version 1.4