MBE and ALD grown High k Dielectrics Gate Stacks on GaN

Dept. of Materials Science and Engineering, National Tsing Hua Univ., Taiwan,
J. KWO, Dept. of Physics, National Tsing Hua Univ., Taiwan, Y.H. WANG,
Dept. of Electrical Engineering, National Cheng-Kung Univ., Taiwan — III-nitride
compound semiconductors are attractive for high-temperature and high-power
MOSFET applications due to their intrinsic properties of wide band gap, high
breakdown field, and high saturation velocity under high fields. In this work GaN-based
high k MOS diodes were fabricated using MBE-grown Ga$_2$O$_3$(Gd$_2$O$_3$), MBE-grown
HfO$_2$ and ALD-grown HfO$_2$ as the gate dielectrics with dielectric constants of 14.7,
17.4 and 16.5, respectively. All MOS diodes exhibited low leakage (\(<10^{-6} \text{ A/cm}^2\)
at $V_{fb}+1$) and well behaved capacitance-voltage curves with a low interfacial density of
states of $\sim10^{11} \text{ cm}^{-2}\text{eV}^{-1}$. Energy-band diagrams of the MOS structures have been
determined by extracting valance-band offset (ΔE_V) from HR-XPS and with the
bandgaps of the oxides. For example, the ALD-grown HfO$_2$-GaN at the interfaces
gave approximately ΔE_C and ΔE_V of 1.2 eV and 1.1 eV, respectively.

M. Hong
Dept. of Materials Science and Engineering,
National Tsing Hua Univ., Taiwan

Date submitted: 27 Nov 2006

Electronic form version 1.4