Comparative Studies of Quasi-One-Dimensional Superconductivity in Sc$_5$Ir$_4$Si$_{10}$ and Lu$_5$Ir$_4$Si$_{10}$

TSUYOSHI TAMEGAI, GUOJI LI, Department of Applied Physics, The University of Tokyo — Compounds with a formula $R_5T_4X_{10}$ (R=Sc, Y, rare earth elements, T=Co, Ir, Rh, Os, X=Si, Ge) crystallize in Sc$_5$Co$_4$Si$_{10}$–type structure with Sc-Si chains running along the c-axis. Some of them show superconductivity with relatively high transition temperatures and coexistence of superconductivity and charge-density wave. We have grown high quality single crystals of Sc$_5$Ir$_4$Si$_{10}$ and Lu$_5$Ir$_4$Si$_{10}$ using the floating-zone method. Thus obtained crystals show superior properties compared with polycrystalline materials, such as higher T_c and H_{c2}. Anisotropic superconducting properties in these crystals are studied in detail. The upper critical field shows clear anisotropy, with $H_{c2}^c > H_{c2}^{ab}$, consistent with the quasi-one-dimensional crystal structure. Both compounds have modest anisotropies with $\gamma (= H_{c2}^{ab}/H_{c2}^c)=2.3$ for Sc$_5$Ir$_4$Si$_{10}$ and $\gamma=1.6$ for Lu$_5$Ir$_4$Si$_{10}$. Magnetic penetration depths in Sc$_5$Ir$_4$Si$_{10}$ ($\lambda_c=900$ A and $\lambda_{ab}=2100$ A) estimated from the magnetic field dependence of the equilibrium magnetization confirm quasi-one-dimensional nature of the superconducting state.

Tsuyoshi Tamegai
Department of Applied Physics, The University of Tokyo