Abstract Submitted for the MAR07 Meeting of The American Physical Society

Comparative Studies of Quasi-One-Dimensional Superconductivity in $\mathbf{Sc}_5\mathbf{Ir}_4\mathbf{Si}_{10}$ and $\mathbf{Lu}_5\mathbf{Ir}_4\mathbf{Si}_{10}$ TSUYOSHI TAMEGAI, GUOJI LI, Department of Applied Physics, The University of Tokyo — Compounds with a formula $R_5T_4X_{10}$ (R=Sc, Y, rare earth elements, T=Co, Ir, Rh, Os, X=Si, Ge) crystallize in $Sc_5Co_4Si_{10}$ -type structure with Sc-Si chains running along the *c*-axis. Some of them show superconductivity with relatively high transition temperatures and coexistence of superconductivity and charge-density wave. We have grown high quality single crystals of $Sc_5Ir_4Si_{10}$ and $Lu_5Ir_4Si_{10}$ using the floating-zone method. Thus obtained crystals show superior properties compared with polycrystalline materials, such as higher T_c and H_{c2} . Anisotropic superconducting properties in these crystals are studied in detail. The upper critical field shows clear anisotropy, with $H_{c2}^c > H_{c2}^{ab}$, consistent with the quasi-one-dimensional crystal structure. Both compounds have modest anisotropies with $\gamma (= H_{c2}^c/H_{c2}^{ab}) = 2.3$ for Sc₅Ir₄Si₁₀ and $\gamma = 1.6$ for Lu₅Ir₄Si₁₀. Magnetic penetration depths in Sc₅Ir₄Si₁₀ ($\lambda_c = 900$ A and $\lambda_{ab} = 2100$ A) estimated from the magnetic field dependence of the equilibrium magnetization confirm quasi-one-dimensional nature of the superconducting state.

> Tsuyoshi Tamegai Department of Applied Physics, The University of Tokyo

Date submitted: 20 Nov 2006

Electronic form version 1.4