Chemical Control of Ferroelectric Switching in PbTiO$_3$ Films

RUEY-VEN WANG, STEPHEN STREIFFER, Center for Nanoscale Materials, Argonne National Laboratory, FAN JIANG, PAUL FUOSS, DILLON FONG, JEFFREY EASTMAN, G. BRIAN STEPHENSON, Materials Science Division, Argonne National Laboratory, KUJTIM LATIFI, CAROL THOMPSON, Department of Physics, Northern Illinois University — Stabilization of monodomain polarization in ultrathin ferroelectric films can be accomplished via surface-adsorbed ions [Fong, D. D. et al., Phys. Rev. Lett. 96, 127601/1-4 (2006)]. Here, we use in-situ grazing-incidence synchrotron x-ray scattering to study the ferroelectric polarization and surface structure of PbTiO$_3$ ferroelectric thin films as a function of vapor environment above the film surface. Coherent PbTiO$_3$ films of 10 nm thickness were grown on conducting SrRuO$_3$ on (001) SrTiO$_3$ substrates. We observe that the polarization direction in the PbTiO$_3$ film can be reversed by changing between oxidizing and reducing atmospheres, and the piezoelectric butterfly loop can be traced out as a function of oxygen partial pressure. Additionally, a new surface reconstruction is observed under reducing conditions.

Work Supported by the U. S. Department of Energy under Contract No. DE-AC02-06CH11357

Ruey-Ven Wang
Center for Nanoscale Materials, Argonne National Laboratory

Date submitted: 20 Nov 2006

Electronic form version 1.4