Superconducting properties of the hexagonal layered molybdenum carbide η-Mo$_3$C$_2$ K. YAMAURA, Q. HUANG, M. AKAISHI, E. TAKAYAMA-MUROMACHI, National Institute for Materials Science, Japan — Superconductivity of η-Mo$_3$C$_2$ (T_c=8.5K) was reported in 1960s, while detailed superconducting and structure properties remained uncertain probably because those were complicated somewhat by carbon non-stoichiometry, partially thermal decomposition, and so on. Recently, we found the degree of problems is fairly reduced by employing high-pressure method, resulting in a distinct sample quality-improvement, which allowed us to conduct neutron diffraction, magnetic susceptibility, and specific-heat measurements on a polycrystalline form of η-Mo$_3$C$_2$ [1]. A significant layered character was found in the structure, which comprises edge-sharing CMo$_6$ octahedra sheets and \sim50% carbon occupied blocks. Magnetic characterization revealed the Ginzburg-Landau parameter of η-Mo$_3$C$_2$ is \sim26, which is close to that for the comparable T_c compound Li$_2$Pd$_3$B (\sim21), but less than a half of that for MgCNi$_3$ (\sim54).