Abstract Submitted for the MAR07 Meeting of The American Physical Society

Superconducting properties of the hexagonal layered molybdenum carbide η -Mo₃C₂ K. YAMAURA, Q. HUANG, M. AKAISHI, E. TAKAYAMA-MUROMACHI, National Institute for Materials Science, Japan — Superconductivity of η -Mo₃C₂ (T_c =8.5K) was reported in 1960s, while detailed superconducting and structure properties remained uncertain probably because those were complicated somewhat by carbon non-stoichiometry, partially thermal decomposition, and so on. Recently, we found the degree of problems is fairly reduced by employing high-pressure method, resulting in a distinct sample quality-improvement, which allowed us to conduct neutron diffraction, magnetic susceptibility, and specific-heat measurements on a polycrystalline form of η -Mo₃C₂ [1]. A significant layered character was found in the structure, which comprises edge-sharing CMo₆ octahedra sheets and ~50% carbon occupied blocks. Magnetic characterization revealed the Ginzburg-Landau parameter of η -Mo₃C₂ is ~26, which is close to that for the comparable T_c compound Li₂Pd₃B (~21), but less than a half of that for MgCNi₃ (~54).

[1] K. Yamaura et al., PRB 74, 184510 (2006).

Kazunari Yamaura NIMS

Date submitted: 28 Nov 2006 Electronic form version 1.4