Abstract Submitted for the MAR07 Meeting of The American Physical Society

Dynamics and effective temperature for a steady-state sheared glass¹ THOMAS HAXTON, ANDREA LIU, University of Pennsylvania Department of Physics and Astronomy — In a model sheared glass, the slow dynamics near the onset of jamming are shown to be controlled by a well-defined effective temperature T_{eff} . We conduct two-dimensional nonequilibrium molecular dynamics simulations of steadily-sheared, densely-packed, bidisperse disks with soft repulsive pairwise interactions in contact with a heat reservoir. We calculate the viscosity and T_{eff} as functions of shear rate $\dot{\gamma}$ and bath temperature T_{bath} . At $\dot{\gamma} = 0$, the system undergoes a glass transition at $T_{\text{bath}} = T_g$. We study the steady state at $\dot{\gamma} \neq 0$ and $T_{\text{bath}} < T_g$. At low $\dot{\gamma}$, T_{eff} decreases extremely slowly with $\dot{\gamma}$ and is nearly independent of T_{bath} , while the viscosity continues to increase rapidly. The dramatic change in dynamics with a gradual change in effective temperature is reminiscent of the behavior of the quiescent system as temperature is lowered towards T_g .

¹This work was supported by NSF-DMR-0605044.

Thomas Haxton University of Pennsylvania Department of Physics and Astronomy

Date submitted: 20 Nov 2006

Electronic form version 1.4