Magnons dispersion and anisotropies in $\text{SrCu}_2(\text{BO}_3)_2$

OLIVIER CEPAS, LPTMC, Universite Paris 6, Y. F. CHENG, P.W. LEUNG, HKUST, T. ZIMAN, Institut Laue Langevin — We study the dispersion of the lowest excited states in the 2d Shastry-Sutherland system, $\text{SrCu}_2(\text{BO}_3)_2$, including all relevant Dzyaloshinskii-Moriya interactions. We can reduce the complexity of the general Hamiltonian to a new simpler model at zero-field that is obtained by transformations of the spin operators. The resulting Hamiltonian is studied by means of exact numerical diagonalization on a 32-site cluster and the couplings are extracted. The Dzyaloshinskii-Moriya interactions affect the dispersion of the magnons (triplet states) to linear-order because they partially lift the frustration of the lattice. We argue that earlier perturbative techniques have overestimated the dispersion and missed the dominant interactions responsible for the dispersion.

Timothy Ziman
Institut Laue Langevin

Date submitted: 06 Dec 2006

Electronic form version 1.4