Phase diagram of pressure-induced superconductor β-(BDA-TTP)$_2MX_4$ (M=Fe, Ga and X=Cl, Br) with localized magnetic moments1 E.S. CHOI, D. GRAF, T. TOKUMOTO, J.S. BROOKS, NHMFL/Florida State Univ., JUN-ICHI YAMADA, University of Hyogo — We have investigated transport and magnetization properties of β-(BDA-TTP)$_2MX_4$ (M=Fe, Ga and X=Cl, Br) as a function of pressure, temperature and magnetic field. The title material undergoes metal-insulator transitions above 100 K at ambient pressure. The insulating phase is suppressed with pressure and superconductivity eventually appears above P_c= 4.5 kbar (X=Cl) and 13 kbar (X=Br). The general temperature-pressure (TP) phase diagram is similar each other, while higher pressure is required for X=Br compounds to suppress the insulating state and induce the superconductivity. Pressure dependent DC magnetization studies on β-(BDA-TTP)$_2$FeCl$_4$ compound revealed that the AFM ordering persist well above P_c. In spite of similarity of phase diagram between M=Fe and M=Ga compounds, magnetoresistance results show distinct behaviors, which indicates the magnetic interaction with the conduction electrons are still effective. The comparison between X=Cl and X=Br compounds suggests the anion-size effect rather than the existence of localized magnetic moments plays more important role in determining the ground state.

1We acknowledge NSF-DMR 0602859 for partial support for this work.