Angular and Temperature Dependent ^{77}Se NMR in the Metallic and Field-Induced Spin Density Wave State in $(\text{TMTSF})_2\text{ClO}_4$1 LLOYD LUMATA, PHIL KUHNS, ARNEIL REYES, JAMES BROOKS, Department of Physics and National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310 — We present an exploratory investigation of the NMR pulse-power and magnetic field direction dependence of the ^{77}Se NMR line shapes and relaxation rates in the metallic and field-induced spin density wave (FISDW) state of the quasi-one-dimensional organic conductor $(\text{TMTSF})_2\text{ClO}_4$. By reducing the integrated NMR pulse power (via width and/or pulse height), the limitations of the enhancement factor below the FISDW transition are overcome, and the ^{77}Se spin-lattice relaxation rate $1/T_1$ can be measured in both the metallic and FISDW states vs. temperature and field direction. Our results on the temperature dependence of $1/T_1$ in the vicinity of the FISDW transition, and also a description of the temperature and field direction dependence of the NMR spectra, will be presented.

1Work supported in part by NSF-DMR-0602859.