Temperature and Pump Pulse Dependence of Superfluorescence from InGaAs/GaAs Multiple Quantum Well in High Magnetic Fields

XI-AOMING WANG, YOUNG-DAHL JHO, JINHO LEE, DAVID REITZE, University of Florida, JUNICHIRO KONO, Rice University, ALEXEY BELYANIN, VITALY KOCHAROVSKY, Texas A&M University, GLENN SOLOMON, Stanford University, XING WEI, STEPHEN MCGILL, NHMFL — Using intense near-IR ultrashort pulse laser excitation, we investigate the characteristics of cooperative emission (superfluorescence) from dense electron hole magneto-plasmas in InGaAs/GaAs MQW in high magnetic fields as a function of temperature and excitation pulsewidth. We find strong narrow line emissions from 0-0 and 1-1 Landau levels (LLs), with thresholds depending on magnetic field and temperature. Varying the excitation pulsewidth (180 fs – 60 ps) and fluence (0.1 – 1 mJ/cm2), we observe qualitative changes in the emission strengths from different LLs. The strong emissions from 0-0 and 1-1 LL excited with short and long pulses are obviously different. Mechanisms of the temperature and excitation pulse width effect on the strong emission are presented.

1Supported by the NSF through grant DMR-0325499 and by the NHMFL through an IHRP grant.