Abstract Submitted for the MAR07 Meeting of The American Physical Society

Magnetic field induced Raman excitations in $Zn_{1-x}Cr_xTe$, $\mathbf{Cd}_{1-x}\mathbf{Cr}_{x}\mathbf{Te}$ and $\mathbf{Cd}_{1-x}\mathbf{Cr}_{x}\mathbf{Se}^{1}$ X. LU, S. TSOI, I. MIOTKOWSKI, S. RODRIGUEZ, A.K. RAMDAS, Purdue Uni., H. ALAWADHI, Sharja Uni., T.M. PEKAREK, Uni. of North Florida — Raman electron paramagnetic resonance(Raman-EPR) of the transitions due to the $\Delta m_s = \pm 1$ spin-flip of the 3d electrons of Cr^+ in $Zn_{1-x}Cr_xTe$ and $Cd_{1-x}Cr_xTe$ are observed at $\omega_{PM}=g(Cr^+)\mu_BB$, g(Cr^+)=2.0041\pm 0.0095 and 2.0039 \pm 0.0093, respectively. Raman lines appear at $\omega_{LO} \pm n \omega_{PM}$, n=1,2 and 3, resulting from the strong FrÖhlich interaction with LO phonon. The intensity of ω_{PM} can be enhanced through the photo-generation process $Cr^{2+} \rightarrow Cr^+$; photoluminescence spectra reveal signatures of excitons bound to Cr^+ acceptors in $Zn_{1-x}Cr_xTe$. The resonance profile of ω_{PM} shows that the strong resonant enhancement is mediated via an exciton bound to a neutral acceptor. Spin flip Raman scattering (SFRS) at ω_{SFR} from donor-bound electrons in Cd_{1-x}Cr_xSe, as well as in pure CdSe, are observed, in turn yielding the s-d exchange energy. The magnetization of $Cd_{1-x}Cr_xSe$ is intermediate between van Vleck and a B₂ Brillouin paramagnetism. The linear dependence of the s-d exchange energy as a function of magnetization yields the s-d exchange constant in $Cd_{1-x}Cr_xSe$, $\alpha N_0 = (213.7 \pm 13)$ meV.

¹This work was supported by the NSF Grant No. DMR 0405082 at Purdue University and DMR 0305653 at the University of North Florida.

A.K. Ramdas Purdue University

Date submitted: 20 Nov 2006

Electronic form version 1.4