Magnetic field induced Raman excitations in Zn$_{1-x}$Cr$_x$Te, Cd$_{1-x}$Cr$_x$Te and Cd$_{1-x}$Cr$_x$Se

X. LU, S. TSOI, I. MIOTKOWSKI, S. RODRIGUEZ, A.K. RAMDAS, Purdue Uni., H. ALAWADHI, Sharja Uni., T.M. PEKAREK, Uni. of North Florida — Raman electron paramagnetic resonance (Raman-EPR) of the transitions due to the $\Delta m_s = \pm 1$ spin-flip of the 3d electrons of Cr$^+$ in Zn$_{1-x}$Cr$_x$Te and Cd$_{1-x}$Cr$_x$Te are observed at $\omega_{PM} = g(Cr^+)\mu_B B$, $g(Cr^+) = 2.0041 \pm 0.0095$ and 2.0039 ± 0.0093, respectively. Raman lines appear at $\omega_{LO} \pm n\omega_{PM}$, $n=1,2$ and 3, resulting from the strong Fröhlich interaction with LO phonon. The intensity of ω_{PM} can be enhanced through the photo-generation process Cr$^{2+} \rightarrow$ Cr$^+$; photoluminescence spectra reveal signatures of excitons bound to Cr$^+$ acceptors in Zn$_{1-x}$Cr$_x$Te. The resonance profile of ω_{PM} shows that the strong resonant enhancement is mediated via an exciton bound to a neutral acceptor. Spin flip Raman scattering (SFRS) at ω_{SFR} from donor-bound electrons in Cd$_{1-x}$Cr$_x$Se, as well as in pure CdSe, are observed, in turn yielding the s-d exchange energy. The magnetization of Cd$_{1-x}$Cr$_x$Se is intermediate between van Vleck and a B_2 Brillouin paramagnetism. The linear dependence of the s-d exchange energy as a function of magnetization yields the s-d exchange constant in Cd$_{1-x}$Cr$_x$Se, $\alpha N_0 = (213.7 \pm 13)$ meV.

1 This work was supported by the NSF Grant No. DMR 0405082 at Purdue University and DMR 0305653 at the University of North Florida.

A.K. Ramdas
Purdue University

Date submitted: 20 Nov 2006

Electronic form version 1.4