Abstract Submitted
for the MAR07 Meeting of
The American Physical Society

Future Power Production by LENR with Thin-Film Electrodes
GEORGE H. MILEY, HEINZ HORA1, ANDREI LIPSON, NIE LUO, P. JOSHI. SHRESTHA, Department of Nuclear, Plasma and Radiological Engineering University of Illinois, Urbana, Il 61801 — PdD cluster reaction theory was recently proposed to explain a wide range of Low energy Nuclear Reaction (LENR) experiments2 If understood and optimized, cluster reactions could lead to a revolutionary new power source of nuclear energy. The route is two-fold. First, the excess heat must be obtained reproducibly and over extended run times. Second, the percentage of excess must be significantly (order of magnitude or more) higher than the 20-50% typically today. The thin film methods described here have proven to be quite reproducible, e.g. providing excess heat of 20-30% in nine consecutive runs of several weeks each. However, mechanical separation of the films occurs over long runs due to the severe mechanical stresses created. Techniques to overcome these problems are possible using graded bonding techniques similar to that used in high temperature solid oxide fuel cells. Thus the remaining key issue is to increase the excess heat. The cluster model provides import insight into this.

1Department of Theoretical Physics, University of New. South Wales, Sydney 2052, Australia (h.hora@unsw.edu.au)

Scott Chubb
Naval Research Laboratory

Date submitted: 29 Nov 2006

Electronic form version 1.4