Electronic properties of 1D LaB$_6$ rods1 G. P. LI, W. N. MEI, JING LU, R. F. SABIRIANOV, Department of Physics, University of Nebraska at Omaha, C. L. CHEUNG, X. C. ZENG, Department of Chemistry, University of Nebraska-Lincoln — Metal hexa-borides have varieties of interesting properties and were utilized frequently in technological applications: e.g. LaB$_6$ is known to have extremely low work function, thus is used as one of the most popular electron emitter. Our project is initiated by the experimental findings that LaB$_6$ nano-rods generated stronger electric current than in the bulk case. Thus we focus on the band structure calculations of quasi-1D nano-rods with various widths and breadths for the purpose of studying the relationship between work function and rod shapes. Our samples consist of up to ten unit cells, i.e. $n \mathbf{a} \times m \mathbf{b}$ (\mathbf{a} and \mathbf{b} are lattice vectors and $n \times m \leq 10$). To accomplish our calculations, we applied GGA density functional theory with all electron and relativistic effect included.

1This work was supported by Nebraska Research Initiative.