First principles study of Crystalline Bundles of Single-Walled Boron Nanotubes1 KAH CHUN LAU, ROBERTO ORLANDO2, RAVINDRA PANDEY, Department of Physics, Michigan Technological University, Houghton, MI — First principles calculations based on density functional theory are performed to study the structural and electronic properties of the crystalline bundles of (n,0) zigzag-type single-walled boron nanotubes (SWBNT). The results predict a substantial modification in the properties of SWBNT bundles relative to those of the isolated nanotubes. The predicted modification can be attributed to a significant interplay between intra- and inter-tubular bonds in determining the stability of SWBNT bundles, analogous to the role played by intra- and inter-icosahedral bonds in the boron crystalline solids. The result shows the SWBNTs exhibit polymorphism, which is likely to be the cause of the difficulty in growing SWBNTs experimentally.

1This work was partially supported by DARPA through ARL Contract No.DAAD17-03-C-0115.
2Permanent Address: Dipartimento di Scienze e Tecnologie Avanzate, Università del Piemonte Orientale, Via Bellini 25/G, 15100 Alessandria, Italy

Kah Chun Lau
Department of Physics, Michigan Technological University, Houghton, MI