Origin of a Localized Vibrational Mode in a GaSb Substrate With a MBE-grown ZnTe Epilayer

A. K. RAMDAS, Purdue Uni., HYUNJUNG KIM, Sogang Uni., Korea, E. TARHAN, Izmir Inst. of Tech., Turkey, G. CHEN, Purdue Uni., M. DEAN SCIACCA, IBM, R. L. GUNSHOR, Purdue Uni. — In the infrared spectrum of a MBE-grown ZnTe epilayer grown on GaSb, a localized vibrational mode (LVM) is observed with a remarkable fine structure. On the basis of the Zn and Te deposited on the GaSb substrate during the MBE growth of ZnTe, it is deduced that 64Zn, replacing Sb substitutionally as an anti-site impurity, is responsible for the LVM. The fine structure can then be interpreted in terms of the infrared active modes of a XY_4 quasimolecule, $X \equiv ^{64}$Zn and $Y \equiv ^{69}$Ga and 71Ga occupying the nearest neighbor sites, reflecting all the possible combinations and permutations as well as their natural isotopic abundance.

1Work supported by Korean Ministry of Sci. and Tech. (M6-0403-0079) and Sogang Uni. [HK] and NSF (DMR 0405082) [AKR, ET and GC].