Capture-Zone Areas & the Wigner Distribution: New Case of Universal Scaling of Spacings in Fluctuating Systems

A. PIMPINELLI, UBP-Clermont 2 (France) & UM, T.L. EINSTEIN, U. of Maryland — When investigating scaling of island sizes during growth in d dimensions, one should consider the distribution of the areas of proximity cells around nucleation centers, i.e., capture zones (CZ). Using data from kinematic Monte Carlo studies, we find that the CZ distributions in both $d = 1$ and $d = 2$ are well described by the generalized Wigner distribution (GWD) from random-matrix theory: $P_\varrho(s) = a s^i \exp(-bs^2)$. $P_\varrho(s)$ accounts for a broad range of fluctuation phenomena, incl. the terrace-width distribution (TWD) on vicinal surfaces. For CZ distributions, we find $q = i + d/2$, where i is the critical nucleus size. We present a phenomenological justification by constructing a Langevin equation similar to that used in accounting for the equilibration of TWDs. We discuss implications for processing and analysis of experimental data.

1Supported by NSF MRSEC Grant DMR 05-20471, partially by DOE CMSN grant DEFG0205ER46227 (TLE) and CNRS Travel Grant (AP)
2Mulheran et al., PRB 53 (96) 10261, 54 (96) 11681; EPL 49 (00) 617, 65 (04) 379. Amar, Family, et al., PRL 74 (95) 2066; PRB 64 (01) 205404. Evans, Bartelt, et al. PRB 66 (02) 235410; SSR 61 (06) 1.
3A. Pimpinelli, H. Gebremariam, & T.L. Einstein, PRL 95 (05) 246101