Microwave measurements of CeCoIn$_5$ using a micro-stripe line1 I. P. NEVIRKOVETS2, O. CHERNYASHEVSKY3, J. B. KETTERSON4, Dep. of Physics and Astronomy, Northwestern University, 2145 Sheridan Rd., Evanston IL 60208, USA, C. PETROVIC, Condensed Matter Physics Department, Brookhaven National Laboratory, Upton, New York 11973, USA — We have studied microwave signal transmission through a structure consisting of a meander-type micro-strip line and a ferromagnetic or superconducting sample placed adjacent to it. The setup, which currently operates from 0 to 9 Tesla and from room temperature to 1.7 K, is suitable for studying both ferromagnetic resonance, and temperature/field dependent superconducting properties. Using this setup we have observed the superconducting transition of a single crystal of CeCoIn$_5$ in the frequency range from 5 to 19 GHz. The technique should be applicable to the study of wavelength-dependent collective modes.

1This work is supported by the National Science Foundation under the grant DMR-0509357.
2also with: Inst. for Metal Physics NASU, 36 Vernadsky Ave., Kyiv, Ukraine
3same as Note 2
4also with: Dep. of Electrical and Computer Engineering, and Materials Research Center, Northwestern University, Evanston, Illinois 60208, USA

Ivan Nevirkovets
Dep. of Physics and Astronomy, Northwestern University,
2145 Sheridan Rd., Evanston IL 60208

Date submitted: 29 Nov 2006