Superconducting gap anisotropy in LuNi$_2$B$_2$C by point-contact spectroscopy1 XIN LU, WAN KYU PARK, LAURA H. GREENE, University of Illinois at Urbana-Champaign, JUNG-DAE KIM, SUNMOG YEO, SUNG-IK LEE, Pohang University of Science and Technology, Korea — The superconducting gap anisotropy in non-magnetic members of the intermetallic borocarbide family still remains controversial. Several scenarios have been proposed including the s+g pairing symmetry and multi-band/multi-gap superconductivity. In order to address this issue, especially the puzzling existence of point nodes along a- and b-axis, we apply the point-contact spectroscopy technique to investigate the superconducting gap structure of single crystals LuNi$_2$B$_2$C (T_c \sim16.5 K) along three different crystallographic orientations. ab-plane surfaces are prepared by embedding and polishing crystals and their orientations are confirmed by X-ray diffraction. Our preliminary conductance data, analyzed by the one-band Blonder-Tinkham-Klapwijk model, show anisotropic gap values, \sim1.6 meV and \sim2.6 meV, along (001) and (110) directions, respectively. We will discuss the possible origin for the gap anisotropy.

1This work is supported by the U.S. DoE Award No. DEFG02-91ER45439 through the Frederick Seitz Materials Research Laboratory and the Center for Microanalysis of Materials at UIUC.