Effect of 3He impurity on the supersolid transition of 4He E. KIM, Korea Advanced Institute of Science and Technology, J. S. XIA, University of Florida, J. T. WEST, X. LIN, M. H. W. CHAN, The Pennsylvania State University — The supersolid phase of 4He was reported by a series of torsional oscillator experiments [1]. One of the most striking features of the supersolid transition is the intriguing 3He impurity effect. The addition of an extremely small amount of 3He impurity broadens the transition and enhances the transition temperature T_c. This effect is very different from that in helium film and that in ‘bulk’ superfluid helium. We have studied the influence of 3He impurity on the supersolid transition systematically by progressively diluting isotopically-pure 4He (3He impurity less than 2ppb) with 3He. The transition temperature is monotonically enhanced with increasing 3He concentration and the supersolid fraction shows a broad maximum around 0.2 ppm. [1] E. Kim and M. H. W. Chan, Science 305, 1941 (2004); Nature 425, 227 (2004); J. Low Temp. Phys. 138, 859 (2005); Phys. Rev. Lett. 97, 115302 (2006).