Effects of thickness and mass anisotropy on the spin susceptibility of the 2DEG in AlAs QWs

STEFANIA DE PALO, SAVERIO MORONI, DEMOCRITOS INFM-CNR, GAETANO SENATORE, DEMOCRITOS INFM-CNR AND UNIVERSITÀ DI TRIESTE — It has been demonstrated that device details, such as the transverse thickness, may affect in a substantial manner the spin susceptibility of the two-dimensional electron gas (2DEG) which is realized in semiconducting heterostructures [1]. An important device detail in AlAs quantum wells (QW) is an in-plane mass anisotropy [2], which even in the regime with only one valley occupied is combined with a sizeable transverse thickness. For selected values of the well width appropriate to the experiments, we evaluate the effect of such thickness and, partly, of the mass anisotropy through a mapping of the 2DEG with mass anisotropy onto an ‘equivalent’ isotropic 2DEG with effective mass $m^* = \sqrt{m_t m_l}$. We then critically compare our results with experimental measurement and assess the importance of anisotropy effects that go beyond this simple minded mapping.

Gaetano Senatore
Democritos INFM-CNR and Università di Trieste

Date submitted: 30 Nov 2006

Electronic form version 1.4