Abstract Submitted
for the MAR07 Meeting of
The American Physical Society

Assisted DNA hairpin retraction from nanopores MENI WANUNU,
Department of Biomedical Engineering, Boston University, Boston, MA 02215,
BUDDHAPRIYA CHAKRABARTI, Lyman Laboratory of Physics, Harvard University,
Cambridge, MA 02138, JEROME MATHE, Department of Polymeric Materials and Interfaces,
Evry University, Evry, France, 91025, DAVID R. NELSON,
Lyman Laboratory of Physics, Harvard University, Cambridge, MA 02138, AMIT
MELLER, Department of Biomedical Engineering, Boston University, Boston, MA
02215 — We present results from recent experimental and theoretical investigations
of DNA hairpin retraction from an α-hemolysin nanopore in the presence of an as-
sisting voltage. By mapping the translocation process to that of biased diffusion
of a Brownian particle we compute the probability of the polymer to stay in the
pore as a function of time. Using this model we back out the diffusion constant
and the drift velocity of the polymer as a function of the assisting voltage. While
the drift-diffusion model gives good agreement with experiments at low voltages it
fails for high assisting voltages. We discuss possible reasons for this along with the
implications of our work.

Amit Meller
Department of Biomedical Engineering, Boston University, Boston, MA 02215

Date submitted: 20 Nov 2006 Electronic form version 1.4