Abstract Submitted for the MAR07 Meeting of The American Physical Society

An asymmetric SQUID for measurement of ultra-small Josephson junctions D.F. SULLIVAN, Department of Physics, University of Maryland, Laboratory for Physical Sciences, J.R. ANDERSON, C.J. LOBB, F.C. WELL-STOOD, Department of Physics, University of Maryland — Ultra-small Josephson junctions offer a variety of potential applications, as well as an opportunity to probe the Josephson effect at the nanoscale. Such junctions, however, are susceptible to fluctuations in the phase difference, γ_1 , across the junction, which leads to a suppression of the critical current I_{01} . The relevant energies which govern the physics of Josephson junctions are the charging energy E_C , the Josephson coupling energy E_J , and the thermal energy $k_B T$. Small junctions have $E_C/E_J >> 1$, while large junctions, with stable critical currents, have $E_C/E_J \ll <1$. A potential method for stabilizing the phase across a small junction will be presented, which entails shunting it with an additional capacitance C_1 and incorporating it in a SQUID loop with another junction having a much larger critical current I_{02} . The SQUID loop inductance, L, couples γ_1 to the *stable* phase difference γ_2 of the large junction. Thus, by properly choosing L and C₁, the uncertainty in γ_1 should be reduced, allowing a precise measurement of I_{01} . In addition to the theoretical arguments behind this approach, experimental data incorporating these ideas will be presented. This work was supported by the National Science Foundation.

> D.F. Sullivan Department of Physics, University of Maryland, Laboratory for Physical Sciences

Date submitted: 30 Nov 2006

Electronic form version 1.4