Abstract Submitted for the MAR07 Meeting of The American Physical Society

NMR and μ SR studies of Sc (S=0) doping effects in a spin-Peierls system TiOCl T. IMAI, E. MEHES, F.L. NING, S. GOLIN, S.R. SAHA, A. ACZEL, J. RODRIGUEZ, McMaster University, F.C. CHOU, National Taiwan University, G.M. LUKE, McMaster University — TiOCl is a model one-dimensional S=1/2 chain system with an incommensurate phase below T_c ~95K and a spin-Peierls ground state below T_c'~65K. We report a detailed NMR and μ SR investigation of the local lattice and spin environment in undoped and Sc (S=0) doped Ti_{1-x}Sc_xOCl (x = 0, 0.01, and 0.03). Based on ³⁵Cl NMR lineshape measurements, we show that all Ti_{1-x}Sc_xOCl samples exhibit signatures of short-range Peierls distortion starting from as high as T*~130K. Moreover, the NMR line splits into two peaks below T_c ~95K, corresponding to two types of local lattice geometries. Only undoped TiOCl develops sharp double peaks below T_c'=65K. μ SR measurements reveal no evidence for a magnetic long range order down to 2K, even for x=0.03. We will compare our results with x-ray scattering measurements (J.P. Clancy et al., this meeting) and doped CuGeO₃.

> T. Imai McMaster University

Date submitted: 20 Nov 2006

Electronic form version 1.4