Defects and Impurities in Solid 4He KEOLA WIERSCHEM, MARTECH, Dept. of Physics, Florida State University, EFSTRATIOS MANOUSAKIS, MARTECH, Dept. of Physics, Florida State University and University of Athens, Greece — We perform path integral Monte Carlo studies of defects and impurities in solid 4He near the low temperature melting transition. The worm algorithm, recently developed for continuum systems, is used to study off-diagonal properties such as the one-body density matrix (OBDM). While this quantity approaches zero exponentially with increasing particle displacement for the “pure” solid, interstitial defects and 3He impurities appear to enhance and/or stabilize the OBDM at long distances. Thus, imperfections in solid helium may lead to the formation of a condensate. These calculations are repeated for two-dimensional solid helium, and compared with results from lattice boson models.