Abstract Submitted for the MAR07 Meeting of The American Physical Society

I(V)S-shaped **Nonlinearities** \mathbf{in} the Characteristic of YBa₂Cu₃O_{7- δ} Microstrips Due to the Presence of Phase Slip Lines.¹ P. MORALES, J.Y.T. WEI, Department of Physics, University of Toronto — Optimally doped high- T_c superconducting YBa₂Cu₃O_{7- δ} microstrips were fabricated using a chemical-free technique based on selective epitaxial growth. Pulsed I(V)measurements of the $YBa_2Cu_3O_{7-\delta}$ microstrips exhibit steps under current biasing and an s-shaped nonlinearity under voltage biasing. Similar features have been seen in narrow superconductors, where $w < \xi$, and are explained by the formation of phase slip centers. The presence of these features in $YBa_2Cu_3O_{7-\delta}$ microstrips are indicative of the formation of phase slip lines, 2D analogs of phase slip centers. The evolution of the s-shaped nonlinearity was studied as a function of temperature and applied magnetic field and will be discussed with respect to the stiffness of the phase and the amplitude of the superconducting order parameter in the high- T_c cuprates.

¹Work supported by NSERC, CFI/OIT, MMO/EMK, and Canadian Institute for Advanced Research.

P. Morales Department of Physics, University of Toronto

Date submitted: 20 Nov 2006

Electronic form version 1.4