Symmetry of Charge and Thermal Transport in Andreev Interferometers

JEFF WEISS, PHILIPPE JACQUOD, University of Arizona — Motivated by recent experiments of Chandrasekhar et al. [Phys. Rev. Lett. 81, 437 (1998); Phys. Rev. B 72, 020502(R) (2005)], we investigate the symmetry of charge and thermal transport through magnetic-field threaded Andreev interferometers. We construct a scattering theory that accounts for multi-terminal geometries with no specific spatial symmetry. We use random matrix theory to calculate both the electrical and thermal four-terminal resistances and the thermopower, focusing on their magnetic flux dependence. Our results on the parity and amplitude of the magnetic field dependence is connected to the experimental results.

Jeff Weiss
University of Arizona

Date submitted: 20 Nov 2006

Electronic form version 1.4